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ABSTRACT 

 With recent advances and cost reductions in next generation sequencing (NGS), the 

amount of genetic sequence data is increasing rapidly. However, before patient specific 

genetic information reaches its full potential to advance clinical diagnostics, the immense 

degree of genetic heterogeneity that contributes to human disease must be more fully 

understood. For example, although large numbers of genetic variations are discovered 

during clinical use of NGS, annotating and understanding the impact of such coding 

variations on protein phenotype remains a bottleneck (i.e. what is the molecular mechanism 

behind deafness phenotypes). Fortunately, computational methods are emerging that can 

be used to efficiently study protein coding variants, and thereby overcome the bottleneck 

brought on by rapid adoption of clinical sequencing. 

 To study proteins via physics-based computational algorithms, high-quality 3D 

structural models are essential. These protein models can be obtained using a variety of 

numerical optimization methods that operate on physics-based potential energy functions.  

Accurate protein structures serve as input to downstream variation analysis algorithms. In 

this work, we applied a novel amino acid side-chain optimization algorithm, which 

operated on an advanced model of atomic interactions (i.e. the AMOEBA polarizable force 

field), to a set of 164 protein structural models implicated in deafness. The resulting models 

were evaluated with the MolProbity structure validation tool. MolProbity “scores” were 

originally calibrated to predict the quality of X-ray diffraction data used to generate a given 

protein model (i.e. a 1.0 Å or lower MolProbity score indicates a protein model from high 

quality data, while a score of 4.0 Å or higher reflects relatively poor data). In this work, the 

side-chain optimization algorithm improved mean MolProbity score from 2.65 Å (42nd 
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percentile) to nearly atomic resolution at 1.41 Å (95th percentile). However, side-chain 

optimization with the AMOEBA many-body potential function is computationally 

expensive. Thus, a second contribution of this work is a parallelization scheme that utilizes 

nVidia graphical processing units (GPUs) to accelerate the side-chain repacking algorithm. 

With the use of one GPU, our side-chain optimization algorithm achieved a 25 times speed-

up compared to using two Intel Xeon E5-2680v4 central processing units (CPUs). We 

expect the GPU acceleration scheme to lessen demand on computing resources dedicated 

to protein structure optimization efforts and thereby dramatically expand the number of 

protein structures available to aid in interpretation of missense variations associated with 

deafness. 
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PUBLIC ABSTRACT 

 Protein structural modeling plays an important role in elucidating the function of 

proteins, studying the changes in function caused by genetic variations that may underlie 

disease, and aiding in the development of new disease therapeutics. However, modeling 

proteins at atomic resolution is computationally expensive; to mitigate this, nearly all 

publicly available protein structures result from highly simplified versions of atomic 

interactions. Unfortunately, models produced via such simplifications, although less 

expensive, often contain structural errors that can influence downstream interpretations. 

Although structural errors can be corrected by application of an advanced model of atomic 

interactions, there is an associated increase in computational resources. Therefore, there is 

a need for new protein modeling algorithms that incorporate the accuracy of advanced 

molecular interactions while maintaining efficiency. The resulting protein models can then 

be used to aid in interpreting missense variations discovered clinically in the context of 

non-syndromic hearing loss. 

In this work, we apply an advanced model of atomic interactions to correct and 

improve existing protein structures with a novel optimization algorithm that maintains 

efficiency. We developed a parallelization scheme – a method that can perform multiple 

calculations simultaneously – that allows our algorithm to use multiple sources of 

computing power concurrently, reducing the time needed to analyze each protein structure. 

We also designed a method that utilizes the most recent advances in computer hardware to 

increase the speed of simulations. Using cutting-edge hardware and our parallelized 

algorithm, we achieved a 25-fold speed-up compared to previous attempts at correcting 

protein structures with an advanced model of atomic interactions. This increase in 
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efficiency will allow, for the first time, high-quality protein structures to be produced for a 

majority of the genes associated with non-syndromic hearing loss. 
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CHAPTER 1: INTRODUCTION 
 

As the most common human sensory deficit, deafness impacts an estimated 360 

million people worldwide. Recent advances in targeted genetic sequencing technology 

such as the development of the OtoSCOPE1,2 (Otologic Sequence and Capture of 

Pathogenic Exons) genetic testing platform have popularized the use of genetic testing in 

clinical diagnostics. OtoSCOPE identifies an average of 545 variants per patient, and all 

variants sequenced by OtoSCOPE are curated in the publicly available Deafness Variation 

Database3,4 (DVD http://deafnessvariationdatabase.org). With hundreds-of-thousands of 

documented genetic variants available from sequencing platforms (nearly 800,000 variants 

in the DVD), interpretation and evaluation of variants is crucial to understanding the 

pathogenic mechanisms that cause deafness. With this large number of sequenced genetic 

variations and limited experimental resources, computational biophysical simulations can 

be used to help elucidate the structural and biochemical impacts that missense variants have 

on inner ear function. Specifically, using massively parallelized algorithms for advanced 

hardware makes physics-based protein modeling an effective and efficient method for 

studying genetic variants. Prior to studying variants using physics-based thermodynamic 

simulations, we must first construct high-quality models for each protein implicated in 

deafness. 

 Presently, most protein structures found in either the Protein Databank (PDB)5 or 

homology modeling databases6,7 are based on structure refinement with pairwise potential 

energy functions (i.e. force fields) such as the fixed charge Amber8, 9, CHARMM10, 11 and 

OPLS-AA12, 13 models. There is currently a trend to augment central processing units 

(CPUs) with the massively parallel architecture provided by graphical processing units 
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(GPUs). The efficient, parallel capacity of GPUs has made protein simulation with a many-

body potential tractable. Many-body potential energy functions for proteins include 

polarizable force fields, such as the AMOEBA14, 15 and CHARMM Drude16 models, and 

continuum representations of solvation17, 18. Previous studies suggest that the resolution of 

many protein structures in the PDB can be improved by these more advanced potential 

energy functions19. Many-body potentials provide an alternative to pairwise models that 

promise to improve protein modeling accuracy. To assess protein structure quality, the 

MolProbity20,21 assessment tool is widely used. MolProbity was calibrated to use 

knowledge-based heuristics to estimate the X-ray diffraction resolution used to produce 

protein structures. For example, MolProbity evaluates all-atom contacts and scores side-

chain rotamers based on empirical distributions. Unfavorable overlap of atoms is measured 

with a clash score, representing the number of unphysical and unfavorable atom overlaps 

per one thousand atoms. Side-chain conformations (i.e. rotamers) are flagged as outliers if 

they fall within the least probable 1 percent of rotamers. By assigning a clash score and 

identifying rotamer outliers, MolProbity is able to pinpoint structural errors that could be 

addressed during later refinement procedures. 

 In this work, we applied a global amino acid side-chain optimization algorithm 

based on an advanced model of atomic interactions (i.e. the AMOEBA polarizable force 

field) to a set of 164 protein homology structural models implicated in deafness. All 

structural models were obtained from the SwissProt22 homology database, based on the 

requirement that the homology template had at least 30% sequence identity to the target 

protein. We assessed the results of our algorithm by analyzing pre- and post-optimized 

structures with the MolProbity protein structure validation tool. Side-chain optimization 
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improved the mean MolProbity score from 2.65 Å (42nd percentile compared to all 

structures in the PDB) to nearly atomic resolution at 1.41 Å (95th percentile). However, 

side-chain optimization with the AMOEBA many-body potential function increases the 

demand for computing resources relative to simple pairwise potential energy functions. We 

recently designed a parallelization method that uses the Parallel Java23 (PJ) message 

passing interface (MPI) library to parallelize across compute nodes and the OpenMM 

library24 to perform side-chain optimization using nVidia GPUs via the CUDA language. 

With the addition of only one GPU to two Intel Xeon E5-2680v4 central processing units 

(CPUs), our side-chain optimization algorithm achieved a 25 times speed-up compared to 

using just the two CPUs. Our parallel algorithm utilizes 94% of the GPU capacity 

according to the nVidia device monitor for a ~100 residue protein domain. Our massively 

parallelized, many-body, side-chain optimization technique improves protein structure 

quality while efficiently using computing resources. We expect the more efficient GPU 

acceleration scheme to lessen demand on computing resources dedicated to protein 

structure optimization efforts. 
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CHAPTER 2: BACKGROUND 

2.1: Overview of NSHL and OtoSCOPE  

Approximately 70 percent2 of individuals with congenital deafness are diagnosed 

with non-syndromic hearing loss (NSHL)–hearing loss in the absence of additional 

symptoms or clinical phenotypes. Nearly a million variants spanning over 80 genes have 

been identified to cause NSHL, which makes NSHL heterogenic and the task of 

pinpointing the genetic cause of many NSHL cases difficult.  However, targeted genomic 

enrichment with massive parallel sequencing (TGE+MPS) is transforming the diagnostics 

of heterogenic disease by laying the foundation for personalized health care. The 

TGE+MPS platform, OtoSCOPE, has been validated as a clinical tool that simultaneously 

interrogates the coding exons and flanking intronic sequence of all genes implicated in 

NSHL25. First developed in 2010, the current version, v8, tests NSHL-causing genes, non-

syndromic mimics like the Usher syndrome genes, mitochondrial genes, and genes that 

have been implicated in the more common forms of syndromic hearing loss. OtoSCOPE 

discovers many variants in each patient sample, and ultimately provides a definitive genetic 

diagnosis for 42 percent of cases1. However, the unannotated novel variants discovered 

during sequencing result in inconclusive results; as such, variant interpretation remains a 

bottleneck for genetic diagnostics in the context of heterogenic disease.  

 With the larger number of variants sequenced by OtoSCOPE and a limited amount 

of resources available for variant interpretation, computational biophysical simulations 

show promise in helping to elucidate the structural and biochemical impacts that missense 

variations have on inner ear protein function. This, in turn, will help to alleviate the 

bottleneck of variant interpretation. One limitation of using protein structural simulations 
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for variant interpretation is the necessity for a high-quality input models for the protein of 

interest.  Only a small fraction of the human proteome has been structurally solved by 

experimental approaches, however, comparative protein modeling can be used to increase 

the structural coverage. Comparative models created from a homologous protein with 30 

percent or greater sequence identity provides a high likelihood that the protein backbone 

fold has been evolutionarily conserved26. To date, approximately 40 percent of the human 

proteome has been comparatively modeled6 against homologous structures with 30 percent 

sequence identity or greater. Analogously, 43 percent of the genes examined by OtoSCOPE 

have corresponding homology models based on 30 percent sequence identity or greater. 

Fortunately, structural coverage of the human proteome has significantly increased in 

recent years and advances in electron cryo-electron microscopy will likely advance 

structural coverage of the human reference proteome in coming years. 

As clinical tools, validated TGE+MPS platforms such as OtoSCOPE have changed 

the clinical evaluation of heterogenic diseases like hearing loss.  Establishing a genetic 

diagnosis is no longer an exclusionary process relegated to the end of an extensive and 

expensive diagnostic algorithm.  Rather, because of its comprehensive design, genetic 

testing now has the highest yield of any test used in the evaluation of hearing loss and as 

such, has moved to the beginning of the diagnostic algorithm.  A positive genetic diagnosis 

can obviate downstream tests, guide subsequent care, and save healthcare dollars. In 

addition, as alternative and personalized therapies for hearing loss are developed, modeling 

the proteins and variants sequenced during comprehensive genetic testing will be 

foundational to therapy implementation.   
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2.2: Force Fields 

As a mathematical description of molecular energetics, a force field can be used to 

simulate the properties of biomolecules. Beginning in the 1940’s, mathematical models 

were developed for diphenyl derivatives and other small, organic compounds27. In contrast, 

present-day simulations often involve whole proteins consisting of thousands of atoms. An 

accurate description of molecular energetics is essential for atomic resolution biomolecular 

simulations, but increased accuracy often introduces increased computational cost. Thus, 

modeling large systems with a quantum mechanical level of detail, though in principle most 

accurate, is too computationally expensive given currently available computer hardware. 

Alternatively, classical molecular mechanics decreases computational costs associated 

with simulation, but may also introduce inaccuracies. For example, some molecular 

mechanics force fields are based on fixed atomic partial charges, which is often too 

simplistic for accurate protein energetics or structural optimization. However, force fields 

with explicit polarization and high order permanent multipoles stand at the intersection 

between accuracy and computational cost. Consequently, in this work we use the 

AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications) 

polarizable force field for accurate protein structure optimization. We use parallelization 

techniques and recent advances in graphical processing units to decrease the time costs 

associated with use of a polarizable force field. 

 The AMOEBA force field incorporates induced dipoles and fixed atomic 

multipoles up to quadrupoles, which in principle makes the model more accurate than 

fixed-charge force field counterparts. First published to define water28 in 2003, the 
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AMOEBA model is transferable as it can represent molecules across aqueous and vapor 

environments. The functional form of the AMOEBA force field is described in equation 1. 

𝑈567895 = 𝑈bond + 𝑈angle + 𝑈b< + 𝑈oop + 𝑈torsion + 𝑈tor–tor(GLY) + 𝑈vdW + 𝑈=>=
?=@A + 𝑈=>='BC 

 +𝑈vdW + 𝑈=>=
?=@A + 𝑈=>='BC 

Equation 1 

The first six terms describe bonded interactions, including bond stretching, angle bending, 

bond-angle cross term, out-of-plane bending, and torsional rotation. The final three terms 

describe non-bonded interactions including van der Waals, permanent electrostatics, and 

polarization energy. Deviations from the ideal angle and bond length, θ0 and b0 

respectively, are accounted for in the bond and angle energy contributions (the first three 

terms of equation 1).  

Bond stretching is described by equation 2, 

𝑈DEBC = 𝐾b 𝑏 − 𝑏I / 1 − 2.55 𝑏 − 𝑏I + 3.793125 𝑏 − 𝑏I /  
Equation 2 

and a bond angle’s energy is described by equation 3. 

𝑈QBR>= = 𝐾< 𝜃 − 𝜃I /	[1 − 0.014 𝜃 − 𝜃I + 5.6×10Z[ 𝜃 − 𝜃I /

− 7.0×10Z\ 𝜃 − 𝜃I ] + 2.2×10Z^ 𝜃 − 𝜃I _] 
Equation 3 

The bond-angle cross term, which represents the coupling of bond stretching and angle 

bending, is shown in equation 4.  

𝑈Da = 𝐾b< 𝑏 − 𝑏I + 𝑏′ − 𝑏′a 𝜃 − 𝜃I  
Equation 4 
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Equation 5 describes out-of-plane bending as an angle, 𝜒, between a vector and plane. 

𝑈EE? = 𝐾d𝜒/ 
Equation 5 

Four linearly bonded atoms will have rotational favorability represented by the torsion 

energy in equation 6. A Fourier expansion with n terms describes the dihedral angle, 𝜙. Kn 

and 𝛿B represent the magnitude and phase of the nth Fourier term, respectively. 

𝑈gE@h'EB = 𝐾B 1 + 𝑐𝑜𝑠 1 + 𝑛𝜙 ± 𝛿B
B

 

Equation 6 

The van der Waals interactions are described by equation 7, where 𝜀'2 represents well 

depth, and 𝜌'2 represents the quotient of separation distance between two atoms (Rij) and 

separation distance given by the lowest energy (R0
ij). 

𝑈pCq = 𝜀'2
1 + 𝛿
𝜌'2 + 𝛿

BZA 1 + 𝛾
𝜌'2A + 𝛾 − 2  

Equation 7 

Using a buffered 14-7 potential, the van der Waals interactions are specifically described 

by equation 8. 

𝑈pCq = 𝜀'2
1.07

𝜌'2 + 0.07

\ 1.12
𝜌'2\ + 0.12

− 2  

Equation 7 



www.manaraa.com

9 	
	

When combining heterogeneous atom pairs,	𝑅'2I =
tuu
v w

3 txx
v w

tuu
v y

3 txx
v y defines the minimum 

energy distance and 𝜀'2 =
_zuuzxx

zuu
{/y3zxx

{/y y defines well depth. 

The permanent electrostatic energy between two atoms i and j, is represented as 

𝑈=>=
?=@A 𝑟'2 = 𝑀'

�𝑇'2𝑀2, where rij is the separation distance between the two atoms. Tij is 

given by equation 9, and Mi is a permanent multipole with a charge (q), dipole (µ), and 

quadrupole (Q) as shown in equation 10. 

   

 

 

 

 

 

 

Equation 9 

 

𝑀' = 𝑞', 𝜇',�, 𝜇',�, 𝜇',�, 𝑄',��, 𝑄',��, 𝑄',��, … , 𝑄',��
�
 

Equation 10 
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An induced dipole at each atomic center can be used to describe polarization shown in 

equation 11, where 𝛼' is the polarizability of atom i and 𝐸',� is the electric field along any 

axis, 𝛼. 

 

𝜇',�'BC = 𝛼'𝐸',� 

Equation 11 

Permanent multipoles and induced dipoles at all other atomic centers (i.e. not i) generate 

the electric field described by equation 12. 

𝜇',�'BC = 𝛼' 𝑇�
'2𝑀2

2

+	 𝑇��
'2�𝜇2�,�

'BC

2�
 

Equation 12 

2.3: Side-Chain Optimization with a Many-Body Potential 

Under the AMOEBA many-body potential, the total energy of a protein, 𝐸 𝐫 , can 

be defined to arbitrary precision using the expansion in equation 13, 

𝐸 r = 𝐸env + 𝐸self 𝑟'
'

+ 𝐸2 𝑟', 𝑟2
2�''

+ 𝐸3 𝑟', 𝑟2, 𝑟�
��22�''

+ ⋯	

Equation 13 

where 𝐸env is the energy of the environment (i.e. the protein backbone and residues that are 

not being optimized), 𝐸self 𝑟'  is the self-energy of residue 𝑖 including its intra-molecular 
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bonded energy terms and non-bonded interactions with the backbone, and 𝐸2 𝑟', 𝑟2  is the 

two-body non-bonded interaction energy between residues i and j excluding other residues. 

The self, two-body, and three-body energy terms are calculated as shown in equations 14, 

15 and 16, respectively. 

 

𝐸self 𝑟' = 𝐸99/�� 𝑟' − 𝐸env	

Equation 14 

 

𝑬2 𝒓𝒊, 𝒓𝒋 = 𝑬𝑩𝑩/𝑺𝑪 𝒓𝒊, 𝒓𝒋 − 𝑬self 𝒓𝒊 − 𝑬self 𝒓𝒋 − 𝑬env 

Equation 15 

	

𝑬3 𝒓𝒊, 𝒓𝒋, 𝒓𝒌 = 𝑬𝑩𝑩/𝑺𝑪 𝒓𝒊, 𝒓𝒋, 𝒓𝒌 − 𝑬self 𝒓𝒊 − 𝑬self 𝒓𝒋 − 𝑬self 𝒓𝒌 − 𝑬2 𝒓𝒊, 𝒓𝒋

− 𝑬2 𝒓𝒊, 𝒓𝒌 − 𝑬2 𝒓𝒋, 𝒓𝒌 − 𝑬env 

Equation 16 

A visual description of equations 14, 15 and 16 are shown in figures 1, 2 and 3 respectively. 
 

 

 
 

 

 

 
 
Figure 1. A visual description of equation 14. The self-energy of residue i, with side-chain 
rotamer conformation a, is equal to the energy of the backbone plus residue combination, 
less the environment (i.e. the backbone and all residues that are not being optimized). 
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Figure 2. A visual description of equation 15. The pair-energy for residues i and j, with 
side-chain rotamer conformations a and b, respectively, is equal to the energy of the 
combination of the backbone plus residues i and j, less both self-energies and less the 
environment. 
 
 
 

 
 

 
 
 
 
 
 
Figure 3. A visual description of equation 16. The three-body energy for residues i, j, and 
k, with side-chain rotamer conformations a, b, and g, respectively, is equal to the energy 
of the backbone plus residues i, j, and k, less three self-energies, three pair-energies and the 
environment. 
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CHAPTER 3: GPU ACCELERATION OF SIDE-CHAIN OPTIMIZATION 

3.1: Massive Parallelization of the Many-Body Expansion 

Computing the self, two-body and three-body energy terms as a function of rotamer 

conformation is computationally expensive. To address this challenge, our Force Field X 

(FFX) program29,30 (http://ffx.biochem.uiowa.edu) utilizes two complementary 

parallelization approaches, including 1) use of the Parallel Java (PJ) message passing 

interface (MPI) library to distribute terms among multiple processes, and 2) the OpenMM 

library to perform force field energy evaluations using nVidia GPUs via the CUDA 

language. FFX uses PJ to sub-divide each shared memory node of a multiple node compute 

cluster into one or more processes. Energy terms are then assigned to processes, evaluated 

and globally communicated using MPI, with synchronization steps between calculation of 

the self, two-body, and three-body terms (i.e. two-body terms depend on self-terms as 

shown in Equation 15, and thus must be calculated after self-energies are completed). For 

nodes with one or more nVidia GPU coprocessors, the FFX-OpenMM interface (based on 

Java Native Access wrappers to the OpenMM C API) can be used to offload energy 

evaluations from FFX running on CPUs to OpenMM on GPUs (figures 1 and 2). Once all 

energy terms are calculated, side-chain rotamers and rotamer pairs are eliminated by low-

energy alternatives based on rigorous mathematical inequalities that have been described 

for pairwise force fields (i.e. dead-end elimination31 and/or Goldstein elimination32) and 

more recently for many-body force fields19 such as the polarizable atomic multipole 

AMOEBA model.  

Prior to exercising dead-end or Goldstein elimination, we apply a pruning technique 

to reduce the number of high-energy side-chain rotamers in a computationally inexpensive 
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method. Side-chain rotamers with a self-energy that is 30 kcal/mol larger than the side-

chain’s lowest energy rotamer (i.e. often corresponding to unphysical clashes with the 

backbone) are pruned from the simulation to avoid superfluous, expensive pair and triple 

energy evaluations involving that high-energy rotamer. Pruning greatly diminishes the 

number of pair and triple energy evaluations necessary prior to dead-end or Goldstein 

elimination.  

In order to perform a global optimization, the energy of all possible rotamer pairs, 

triples, etc., must be evaluated to find the rotamer combination with the lowest energy. The 

effect that any side-chain has on another side-chain acts as a function of distance, where in 

general the further apart the rotamers, the smaller the effect. The advantage of calculating 

the energy for a set of rotamers with a large distance between them is small relative to the 

cost of computing. To avoid expensive energy evaluations on a set of rotamers separated 

by a large distance, we assign a cut-off distance where the effect that any two or more side-

chains have on each other is assumed infinitesimal if those side-chains are separated by a 

distance larger than the cut-off. 

The combination of possible side-chain conformations grows exponentially with 

protein size, making large proteins a particularly difficult optimization problem. In order 

to simplify the optimization of large proteins, we used a “box optimization” method. In 

this method, a box containing several amino acids is centered at the alpha carbon of the N-

terminus. The box is treated as an independent system where amino acids outside of the 

box are assumed to have no effect inside of the box. The combinations of all rotamers that 

lie in the box are evaluated until the lowest energy for the box is solved. The box is then 

incrementally moved along the protein and solved until all side-chains are in their lowest 
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energy conformation. Box-optimization avoids the unnecessary evaluation of side-chains 

separated by a large distance through only evaluating rotamers lying within the relevant 

boxed area. 

Figures 4 and 5 describe the parallelization methods used during the calculation of 

self and pair energies, respectively. This parallelization technique is extended to three-body 

terms in our global protein side-chain optimization algorithm as well. 
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Figure 4. A) 𝐸h=>� 𝑅'�  represents the self-energy for residue i in rotamer conformation a. 
The total number of rotamer self-energies to be calculated is Nself= rot'B

'-.  (where roti is 
the number of rotamers for residue i). B) A scheduler dynamically assigns calculation of 
each self-energy to a node (blue box). In this example, each of the four nodes will evaluate 
approximately Nself/4 self-energies. Java MPI (red arrows) is used to synchronize and 
communicate among nodes. Each node sends the current rotamer-dependent coordinates 
(X) to a GPU (green box), which returns the self-energy (E) for that rotamer. Use of GPUs 
accelerates the calculation of energy terms 
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Figure 5. A) 𝐸/ 𝑅𝑖𝛼, 𝑅𝑖
𝛽  represents the pair-energy of residues i and j with rotamer 

conformations a and b, respectively. The total number of rotamer pair-energies to be 
calculated is Npair= rot' rot2B

2-'3.
B
'-.  B) A scheduler dynamically assigns calculation 

of each pair-energy to a node (blue box). In this example, each of the four nodes will 
evaluate approximately Npair/4 pair-energies. Java MPI (red  arrows) is used to synchronize 
and communicate among nodes. Each node sends the current rotamer-dependent 
coordinates (X) to a GPU (green box), which returns the energy (E) for that rotamer pair. 
Use of GPUs accelerates the calculation of energy terms	
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3.2: Acceleration Results 

We tested our Java MPI parallelization scheme by collecting the timings for a 

global side-chain optimization of a domain in the USH1C protein, which is commonly 

implicated in hearing loss. We used nodes consisting of two Intel Xeon E5-2680v4 CPUs 

and tested the algorithm using one, two, three and four total nodes. Results from the energy 

evaluation timings for two-body interactions are shown in Table 1, and the respective 

results for three-body interactions are shown in Table 2.  Using multiple nodes achieved a 

linear speed-up for both two-body and three-body interaction simulations. Side-chain 

optimization visibly improved the USH1C domain by extending secondary structure and 

increasing hydrogen bonding (Figures 6 and 7).  

Table 1. Timings for energy evaluations of a global rotamer optimization through two-
body interactions (617 self, 80358 pair) for an USH1C domain using a varying number 
of nodes (each node has two Intel Xeon E5-2680v4 CPUs). 
# Nodes Seconds Speed-Up 
1 13760  1x 
2 6608 2x 
3 4436 3x 
4 3341 4x 

  

Table 2. Timings for energy evaluations of a global rotamer optimization through three-
body interactions (617 self, 80358 pairs, 4123053 triples) for an USH1C domain using 
a varying number of nodes (each node has two Intel Xeon E5-2680v4 CPUs). 
# Nodes Seconds Speed-Up 
1 729200  1x 
2 349700 2x 
3 233600 3x 
4 174600 4x 
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Figure 6. USH1C domain before (blue) and after (grey) side-chain optimization. The 
superimposed domains show that the optimization procedure extended the protein’s 
secondary structure (red arrows). 

 

  
Figure 7. USH1C domain before (blue, left) and after (grey, right) two-body side-chain 
optimization. Finding low-energy rotamers increased the hydrogen bonding networks of 
the domain as evidenced by the additional hydrogen bond between glutamic acid and 
lysine (on right). 
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We then tested our GPU parallelization on the USH1C domain using a varying 

number of nodes and GPUs. Offloading energy calculations to OpenMM on a single node 

equipped with a GPU (two Intel Xeon E5-2680v4 CPUs and one nVidia GPU) resulted in 

a 24-fold speed-up for both two-body and three-body interaction simulations compared to 

using one node (two Intel Xeon E5-2680v4 CPUs) with no GPU. According to the nVidia 

device-monitoring tool, our algorithm efficiently used the GPUs at 94% utilization. Results 

from the two-body and three-body GPU accelerated side-chain optimization are shown in 

Tables 3 and 4, respectively.  

Table 3. Energy evaluation timings for two-body (617 self, 80358 pair) global side-chain 
optimization for an USH1C domain using a varying  number of nodes (each node with 
two Intel Xeon E5-2680v4 CPUs and one nVidia Tesla p100 GPU). 
Computing Unit 
(# Nodes / # GPUs) 

Time 
(sec) 

Speed-Up Relative to 1 
Node (without using GPU)  

1 Node / 1 GPU 561.8 24.5x 
2 Nodes / 2 GPUs 296.5  46.4x 
3 Nodes / 3 GPUs 204.3 67.4x 
4 Nodes / 4 GPUs 157.9 87.1x 

 

Table 4. Energy evaluation timings for three-body global side-chain optimization for 
USH1C domain using a varying number of nodes (each with two Intel Xeon E5-2680v4 
CPUs and one nVidia Tesla p100GPU). 
Computing Unit 
(# Nodes / # GPUs) 

Time 
(sec) 

Speed-Up Relative to 1 
Node (without using GPU)  

1 Node / 1 GPU 29970 23.3x 
2 Nodes / 2 GPUs 16390 42.7x 
3 Nodes / 3 GPUs 11230 62.3x 
4 Nodes / 4 GPUs   8647 80.9x 

 

Pruning of high-energy rotamers resulted in an additional 2.28-fold speed-up of a 

global side-chain optimization on the USH1C domain. Table 5 shows the timings for 

USH1C domain optimization with and without pruning of high self-energy rotamers. 
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Table 5. Energy evaluation timings for two-body (617 self, 80358 pair) global side-chain 
optimization for an USH1C domain using a varying  number of nodes (each with two 
Intel Xeon E5-2680v4 CPUs and one nVidia Tesla p100 GPU) both with and without 
pruning of high-energy rotamers. 
Computing Unit 
(# Nodes / # GPUs) 

Time Without 
Pruning (sec) 

Time With Pruning 
(sec) 

Relative Speed-
Up  

1 Node / 1 GPU 2460 1078 2.28x 
 

Figure 8 shows a graph of optimization acceleration from the parallel methods 

described as timed on the University of Iowa High Performance Computing Clusters (HPC) 

Neon and Argon. Using Neon nodes consisting of two Intel Xeon E5-2609 CPUs, a global 

two-body side-chain optimization of the 110 residue USH1C domain required 400 minutes 

of simulation. Parallelizing over nodes and across nVidia GPUs allows our algorithm to 

utilize an nVidia GPU equipped Argon nodes consisting of two Intel Xeon E5-2680 CPUs 

simultaneously, resulting in a 40-fold speed-up compared to previous generation Neon 

hardware. Parallelizing across four Argon GPU nodes reduced the simulation time to less 

than three minutes.  
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Figure 8. Parallel performance for computing many-body energy terms for a 110 residue 
protein. After parallelization using a single nVidia P100 GPU, the walk-clock time was 
reduced from more than 400 minutes on a Neon node down to less than 10 minutes on an 
Argon GPU node (i.e. a 40x speed-up). An additional 4x speed-up is demonstrated via 
parallelization across multiple nodes (i.e. a 160x speed-up overall). 
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CHAPTER 4: OPTIMIZATION OF PROTEIN STRUCTURES IMPLICATED IN 

DEAFNESS 

4.1: Side-Chain Optimization of Deafness Proteins 
 

Comparative protein models for 104 genes (164 total protein structural models) 

included in the OtoSCOPE genetic testing platform were acquired from SwissProt6 and 

ModBase7, which are both exhaustive databases of protein homology models derived from 

alignments to sequences whose structures have been determined using experimental 

methods such as x-ray crystallography. Comparative protein modeling provides a means 

by which researchers can predict the structure of a protein whose atomic coordinates have 

not been solved experimentally by crystallography, NMR or analogous methods.33 Many 

human genes implicated in hearing loss have not been studied experimentally, so 

computational approaches are necessary to generate plausible protein structures. 

Comparative protein modeling begins from an experimental structure for an evolutionarily 

related protein, which is used as a template for the target sequence.7, 34 The percent 

sequence identity between the homologues provides an estimate on the reliability of the 

model.35 

Starting from the sequence alignment to an experimentally solved homolog, 

structural refinement algorithms based on pairwise fixed partial charge potential energy 

functions are used to locally optimize the new amino acid backbone and side-chain 

coordinates. Although both SwissProt and ModBase provide structural coverage for a large 

portion of the human exome, the breadth of these databases limits the compute resources 

spent on any individual protein structure. Comparative protein models from leading 

databases can usually be further refined so that their structure is more consistent with what 
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is known about molecular conformations and side-chain packing. Thus, use of advanced 

potential energy functions, such as the AMOEBA force field, in tandem with global 

optimization of amino acid side-chains19 can greatly improve the quality of SwissProt or 

ModBase structures as assessed by tools such as MolProbity. MolProbity is widely used 

by x-ray crystallographers to aid refinement of models by reporting structural features that 

are known to be unphysical and by recommending low-energy, favorable conformational 

changes to amino acid backbones and/or side-chains. Lower MolProbity scores indicate a 

structure that is consistent with higher quality x-ray diffraction data (i.e. a MolProbity score 

of 1.0 reflects the resolution of data at 1.0 Å). All homology models used in this study have 

sequence identity of 30% or greater to their template structures, which correspond to a high 

likelihood that the protein backbone fold has been evolutionarily26 conserved. High quality 

protein structural models, in turn, provide optimal starting models for downstream 

molecular dynamics algorithms that can be used to compute thermodynamic changes in 

protein folding or binding stability.  

 Homology models were refined using the AMOEBA force field as the potential 

energy function. The input homology models were subject to a minimization algorithm, 

followed by global side-chain repacking, a second minimization, and finally an iterative 

local side-chain optimization and minimization. The initial minimization step was 

accomplished by means of a quasi-Newton optimization algorithm presented by Broyden36, 

Fletcher37, Goldfarb38, and Shanno39 (BFGS) in which the Hessian matrix is approximated 

using a series of gradients to improve algorithm convergence. The global side-chain 

optimization40 assumes a rigid backbone and is based on an energy expansion that includes 

the energy of the environment, self-energy terms for each residue from a discretized side-
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chain conformation or rotamer, and pairwise terms for the interaction between two side-

chains. For smaller systems, the energy due to three-body interactions (interaction of three 

residues) was also calculated. Using the Goldstein elimination criteria for elimination of 

single rotamers and rotamer pairs31,32,40, the relative energy of rotamers were compared to 

eliminate conformations not found in the global minimum energy conformation (GMEC). 

Upon determining the lowest energy state of the side chain conformations, the model was 

subject to a second BFGS minimization.  

 The purpose of the first minimization was to eliminate obvious steric clashes in the 

starting structure. The RMS gradient convergence criterion was conservatively set to 1.0. 

The global rotamer optimization algorithm was then used to place side-chains into an 

optimal set of rotamers based on the energy of each set of conformations. During this 

procedure, to reduce the permutation space for large models, the sliding box optimization 

method was used to partition the model into a user-specified number of separate sections 

in three-dimensional space or boxes. In each box, the GMEC was found given a certain 

combination of rotamers, which were then incorporated into the coordinates for the final, 

optimized structure. Additionally, the procedure allows for specification of box overlap, 

limiting the amount of bias resulting from semi-global rotamer optimization compared to 

global rotamer optimization.  

The second minimization was done in order to let the rigid conformations of the 

rotamers relax and establish bonding networks as might be seen in vivo. Since rotamers are 

structurally stiff, they only give an approximate location of side-chain atoms; consequently, 

this last minimization is a necessary step toward their correct placement. Finally, local 

rotamer optimization and minimization were performed to ensure that prior optimization 
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steps (primarily minimization) did not result in rotamers moving too far from their lowest 

energy conformation. Iterative rotamer optimization and minimization allows large energy 

barriers to be overcome, helping to place the protein structure coordinates in a low energy, 

favorable conformation. 

4.2: Optimization Results 

For both starting homology models and refined structures, integrity was measured 

using the MolProbity scoring metric, a heuristic algorithm that assesses bad steric clashes, 

poor rotamers and placement in the Ramachandran Plot. Among crystallographers, the 

MolProbity score is widely accepted as an approximation of the equivalent x-ray resolution 

of a model (e.g. a MolProbity score of 1.0 approximately corresponds to an X-ray 

resolution of 1.0 Å). On average, by using our AMOEBA and the side-chain repacking 

algorithm, we reduced the number of steric clashes above 0.4Å per 1000 atoms from 43.2 

to 1.6 and decreased the percentage of poor rotamers from 2.70% to 0.21% (a poor rotamer 

is one in which the side chain position is inconsistent with the majority of proteins in the 

protein data bank). The MolProbity statistics for all of the optimized comparative models 

are shown in Table 6. The complete list of all statistics for each model is shown in Table 

A1. 

Table 6.  Average MolProbity refinement statistics for all OtoSCOPE proteins considered 
in this work. 
Sequence 
Identity 

 
Model 

Clash Poor 
Rotamers 

MolProbity 
Score %tile Score %tile 

63.4% 
Original 43.2 31 2.70% 2.65 42 
FFX  1.6 99 0.21% 1.41 95 
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CHAPTER 5: CONCLUSIONS 

5.1: Summary of GPU Accelerated Optimization 

This work describes the massive parallelization of a global amino acid side-chain 

protein optimization algorithm, followed by application to understanding missense variants 

implicated in non-syndromic hearing loss. This optimization algorithm uses a polarizable 

force field to dramatically improve the structural quality of protein models as accessed by 

the MolProbity tool, which ultimately prepares the structures for use in downstream free 

energy simulation algorithms. Using the Parallel Java message-passing interface (MPI), we 

parallelized the optimization algorithm across compute nodes and achieved a linear speed-

up as a function of node count. In addition to MPI parallelization, amino acid side-chain 

energy evaluations were evaluated using nVidia GPUs via the OpenMM library. Compared 

to using 1 to 4 nodes without GPUs, inclusion of 1 GPU per node achieved a 25-fold speed-

up (i.e. 4 GPU nodes was 100x faster than one node with no GPU). We also showed that 

pruning unphysical, high self-energy rotamers provides an additional 2.3-fold speed-up. 

Our accelerated approach opens the door to routine use of advanced polarizable force fields 

during protein optimization for the first time.  

We applied the algorithm to a set of SwissProt and ModBase comparative protein 

models that are implicated in non-syndromic hearing loss. According to MolProbity, the 

average quality of the protein set before optimization ranked in the 42nd percentile 

compared to structures in the PDB. After optimization, the average quality of the protein 

set ranked in the 95th percentile, demonstrating that our algorithm effectively optimizes the 

protein structures and prepares the models for use in free energy simulations studies. 
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5.2: Future Directions and Alternative Applications 

Advances in genetic sequencing platforms, such as the clinical tool OtoSCOPE 

used to understand non-syndromic hearing loss, have exposed genetic heterogeneity in 

many human diseases. Fully understanding and annotating the thousands of genetic 

variants sequenced by OtoSCOPE remains a challenge; however, simulation techniques 

can be used to increase our understanding of missense variations at a larger scale than is 

possible experimentally. For example, beginning from the models described in this work, 

its possible calculate thermodynamic changes in protein folding stability or protein-protein 

binding affinity caused by genetic variants. Such protein phenotypes can help to explain  

patient phenotypes and support clinical diagnostics. Overall, the optimized structures in 

this work lay a foundation for using high-quality protein models in thermodynamic variant 

analysis simulations. Future work will include 1) updating and optimizing the collection of 

proteins implicated in deafness as new structures are solved, comparatively modeled, or 

created from ab initio techniques and 2) using thermodynamic simulations with a 

polarizable force field to study variations discovered by OtoSCOPE.  
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APPENDIX 
 

Table A1.  The complete list of MolProbity statistics for all OtoSCOPE proteins studied 
in this work. The gene and residue ranges being modeled are shown in the two left-most 
columns, followed by the sequence identity to the template experimental structure the 
model was based off of, and then output from the MolProbity scoring algorithm. 

Gene 

Residue 

Range 

Sequence 

Identity Model 

Clash Poor  

Rotamers 

MolProbity 

Score %tile Score %tile 

ACTG1 
6-375 100% 

Original 7.78 83 2.88% 2.2 64 

FFX 2.44 99 0.00% 1.48 96 

CDH23 
24-233 98% 

Original 4.03 96 0.00% 1.19 99 

FFX 0.93 99 0.00% 0.99 100 

418-537 39% 
Original 161.21 0 0.92% 3.24 15 

FFX 1.05 99 0.00% 1.55 94 

586-817 33% 
Original 65.85 1 3.43% 3.53 8 

FFX 0.86 99 0.49% 1.55 94 

934-1312 32% 
Original 117.75 0 2.74% 3.49 9 

FFX 2.75 98 0.00% 1.79 86 

1358-1567 34% 
Original 64.38 1 2.81% 3.41 10 

FFX 1.59 99 0.56% 1.66 90 

1628-1742 32% 
Original 39.36 8 1.96% 3.04 21 

FFX 2.28 99 0.00% 1.81 85 

1845-1935 38% 
Original 35.23 10 0.00% 2.77 33 

FFX 0.72 99 0.00% 1.45 96 

2063-2172 40% 
Original 50.96 3 0.00% 2.93 25 

FFX 3.6 97 1.05% 1.77 87 

2231-2340 34% 
Original 31.06 14 4.17% 3.03 22 

FFX 1.19 99 0.00% 1.55 94 

2396-2503 39% 
Original 128.54 0 2.13% 3.44 10 

FFX 1.84 99 0.00% 1.66 90 

2503-2605 39% Original 37.45 9 3.33% 3.2 16 
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Table A1 – Continued. 

Gene 

Residue 

Range 

Sequence 

Identity Model 

Clash Poor  

Rotamers 

MolProbity 

Score %tile Score %tile 

COCH 
165-281 33% 

Original 45.01 5 1.05% 2.51 47 

FFX 2.2 99 0.00% 1.3 98 

365-516 32% 
Original 37.7 9 0.80% 2.62 40 

FFX 0.88 99 0.00% 1.45 96 

DFNB31 
132-226 96% 

Original 25.1 21 11.11% 3.47 9 

FFX 0.7 99 0.00% 1.45 96 

264-378 99% 
Original 5.64 92 13.83% 2.95 25 

FFX 0.56 99 0.00% 1.41 97 

813-904 98% 
Original 11.1 66 2.70% 2.44 51 

FFX 0 100 0.00% 0.71 100 

DIAPH1 
92-452 91% 

Original 16.09 45 5.49% 2.73 35 

FFX 2.05 99 0.30% 1.35 98 

762-1215 92% 
Original 5.91 91 7.28% 2.49 48 

FFX 1.21 99 0.73% 1.3 98 

ESPN 
9-336 31% 

Original 67.8 1 1.20% 3.08 20 

FFX 1.66 99 0.40% 1.55 94 

ESRRB 
97-186 99% 

Original 3.48 97 2.67% 2.05 73 

FFX 1.39 99 0.00% 1.56 93 

211-433 80% 
Original 9.02 77 0.51% 1.48 96 

FFX 0.55 99 0.00% 0.74 100 

EYA4 
369-639 77% 

Original 18.96 35 3.88% 2.64 39 

FFX 2.11 99 0.00% 1.5 95 

GPIC3 
108-196 61% 

Original 13.59 56 0.00% 1.96 78 

FFX 0.72 99 0.00% 1.34 98 

GJB2 
2-217 93% 

Original 31.11 14 5.13% 3.22 16 

FFX 1.12 99 0.51% 1.39 97 
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Table A1 – Continued. 

Gene 

Residue 

Range 

Sequence 

Identity Model 

Clash Poor  

Rotamers 

MolProbity 

Score %tile Score %tile 

GJB3 
2-210 56% 

Original 52.92 3 2.69% 3.21 16 

FFX 3.19 97 0.00% 1.71 89 

GJB6 
2-216 74% 

Original 46.2 5 4.10% 3.31 13 

FFX 2.25 99 0.00% 1.58 93 

GPSM2 
20-381 98% 

Original 5.05 94 1.05% 1.28 99 

FFX 2.34 99 0.00% 1.01 100 

594-648 95% 
Original 15.66 47 6.00% 2.72 35 

FFX 0.58 99 0.00% 1.16 99 

HGF 
34-289 99% 

Original 5.86 91 1.72% 1.95 78 

FFX 1.95 99 0.43% 1.47 96 

305-470 45% 
Original 50.06 4 0.00% 2.79 32 

FFX 4.32 96 0.67% 1.85 83 

495-721 100% 
Original 8.21 80 0.00% 1.68 90 

FFX 2.83 98 0.52% 1.26 99 

HOMER2 
3-111 91% 

Original 10.34 70 0.00% 2.11 69 

FFX 2.3 99 0.00% 1.44 96 

KCNQ4 
174-332 31% 

Original 68.91 1 0.00% 3.02 22 

FFX 1.29 99 0.00% 1.39 97 

LRTOMT 
78-143 42% 

Original 60.32 2 0.00% 2.89 27 

FFX 0 100 0.00% 1.24 99 

MARVELD2 
441-548 31% 

Original 40.02 8 0.00% 2.08 71 

FFX 1.08 99 0.00% 0.81 100 

MSRB3 
49-166 62% 

Original 21.17 30 0.00% 2.12 69 

FFX 0.56 99 0.98% 1.25 99 

MYH9 
7-806 82% 

Original 83.62 0 15.06% 4.08 2 

FFX 3.56 97 0.14% 1.69 90 
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Table A1 – Continued. 

Gene 

Residue 

Range 

Sequence 

Identity Model 

Clash Poor  

Rotamers 

MolProbity 

Score %tile Score %tile 

MYH14 
49-799 98% 

Original 20.87 30 2.95% 2.62 40 

FFX 1.41 99 0.16% 1.44 96 

MYO15A 
1222-1838 46% 

Original 65.34 1 0.19% 2.74 34 

FFX 1.51 99 0.00% 1.43 97 

2871-2956 38% 
Original 130.34 0 1.41% 3.41 10 

FFX 2.9 98 0.00% 1.81 85 

MYO3A 
16-287 53% 

Original 33.82 12 0.00% 2.48 48 

FFX 2.07 99 0.00% 1.49 95 

323-996 36% 
Original 71.37 1 0.17% 2.78 32 

FFX 1.39 99 0.33% 1.42 97 

MYO6 
2-825 98% 

Original 6.2 90 4.38% 2.2 65 

FFX 1.59 99 0.55% 1.21 99 

840-992 93% 
Original 20.25 31 10.26% 2.67 38 

FFX 1.45 99 0.00% 1.39 97 

1175-1277 98% 
Original 2.34 99 2.22% 1.28 99 

FFX 2.92 98 0.00% 1.08 100 

MYO7A 
60-686 44% 

Original 71.86 1 0.18% 2.71 36 

FFX 1.19 99 0.90% 1.4 97 

817-935 33% 
Original 37.32 9 3.03% 3 23 

FFX 0.96 99 0.00% 1.51 95 

993-1686 84% 
Original 29.16 16 2.16% 2.6 41 

FFX 1 99 0.17% 1.28 98 

OTOF 
1-124 91% 

Original 8.52 79 1.77% 1.93 79 

FFX 0.5 99 0.00% 0.88 100 

1494-1574 34% 
Original 135.01 0 7.14% 4.05 2 

FFX 1.57 99 0.00% 1.70 89 
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Table A1 – Continued. 

Gene 

Residue 

Range 

Sequence 

Identity Model 

Clash Poor  

Rotamers 

MolProbity 

Score %tile Score %tile 

PCDH15 
27-255 95% 

Original 10.89 67 0.00% 1.55 94 

FFX 0.56 99 0.00% 0.92 100 

POU3F4 
189-338 77% 

Original 128.08 0 7.52% 3.81 4 

FFX 1.23 99 0.00% 1.28 99 

POU4F3 
186-332 49% 

Original 171.95 0 4.03% 3.65 6 

FFX 1.25 99 0.00% 1.5 95 

PRPS1 
3-317 98% 

Original 12.94 58 3.00% 2.32 58 

FFX 1.64 99 0.00% 1.45 96 

RDX 
1-325 90% 

Original 14.65 51 5.42% 2.75 34 

FFX 1.28 99 0.00% 1.35 98 

494-583 72% 
Original 7.62 83 1.28% 1.72 88 

FFX 0.69 99 0.00% 0.94 100 

SLC26A4 
516-577 35% 

Original 25.46 21 0.00% 2.11 70 

FFX 1.02 99 0.00% 1.49 95 

620-727 34% 
Original 54.7 3 0.00% 2.71 36 

FFX 1.71 99 0.00% 1.46 96 

SLC26A5 
505-718 48% 

Original 38.99 8 1.67% 2.65 39 

FFX 1.8 99 0.00% 1.50 95 

TMPRSS3 
217-449 46% 

Original 34.13 11 0.52% 2.48 48 

FFX 1.14 99 0.52% 1.41 97 

USH1C 
1-192 99% 

Original 3.2 97 1.72% 1.29 98 

FFX 0.64 99 0.57% 0.71 100 

441-552 95% 
Original 22.25 27 10.11% 3.42 10 

FFX 1.76 99 0.00% 1.61 92 
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Table A1 – Continued. 

Gene 

Residue 

Range 

Sequence 

Identity Model 

Clash Poor  

Rotamers 

MolProbity 

Score %tile Score %tile 

USH1G 
7-149 38% 

Original 56.9 2 0.85% 2.75 34 

FFX 1.79 99 1.69% 1.59 93 

388-461 99% 
Original 2.51 98 1.54% 1.18 99 

FFX 1.67 99 0.00% 0.92 100 

USH2A 
326-728 34% 

Original 83.63 0 0.83% 3.13 18 

FFX 3.27 97 0.83% 1.79 85 

768-901 34% 
Original 57.42 2 0.85% 2.85 29 

FFX 2.52 98 1.69% 1.93 79 

922-1052 33% 
Original 51.43 3 1.80% 2.93 26 

FFX 1.61 99 0.00% 1.64 91 

1716-1871 31% 
Original 78.58 0 3.05% 3.38 11 

FFX 2.89 98 0.00% 1.75 87 
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